

 Navigation

 	
 index

 	
 next |

 	SHARE 2.0 documentation

SHARE

SHARE is a higher education initiative whose mission is to maximize research impact by making research widely accessible,
discoverable, and reusable. To fulfill this mission SHARE is building a free, open, data set about research and scholarly
activities across their life cycle.

SHARE harvests metadata nightly from 100+ repositories, transforms that metadata into one format, and makes it accessable via a web API.

The technical side of SHARE has many pieces that you can interact with:

	
	A search endpoint powered by elasticsearch that indexes the transformed data allowing:

	
	
	Thorough search of creative works:

	
	Creative works: /api/v2/search/creativeworks/_search [https://share.osf.io/api/v2/search/creativeworks/_search]

	more info on the elasticsearch docs page

	Data aggregations across fields

	
	An Ember application using the SHARE API for:

	
	Searching the SHARE database

	Discovering new Projects

	Corrections and Updates

	
	API Endpoints for accessing transformed metadata

	
	https://share.osf.io/api/v2

Guide

	Quickstart
	SHARE Pipeline

	Harvesters and Transformers
	Start Up

	Running Existing Harvesters and Transformers

	Printing to the Console

	Writing a Harvester and Transformer

	SHARE Models

	Elasticsearch
	Fields Indexed by Elasticsearch

	Accessing the Search API

	SHARE API
	Getting Started

	Paging in the API

	Push data directly into the SHARE database

	Ember Application

Contribute

	Source Code: https://github.com/CenterForOpenScience/SHARE

	Issue Tracker: https://github.com/CenterForOpenScience/SHARE/issues

Get In Touch

For emails about technical support: share-support@osf.io

Association of Research Libraries
21 Dupont Circle NW #800
Washington, DC 20036
202-296-2296
info@share-research.org

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SHARE 2.0 documentation

Quickstart

SHARE Pipeline

THE SHARE Pipeline can be setup locally for testing and modifications. Note: Kill any postgres process running before
starting.

If prompted, install docker from https://docs.docker.com/docker-for-mac/.

This requires Python 3.5; If necessary, follow the steps below:

From scratch:

pip install virtualenv
pip install virtualenvwrapper

Create virtualenv ‘share’:

mkvirtualenv share --python=python3.5

Switch into the share environment for the first time:

workon share

Note - These instructions are for getting up and running with the simplest steps possible and is good as more of a refresher –
for more details, or getting started for the first time, please see the section on getting up and
running on the Harvesters and Transformers section.

THE SHARE Pipeline can be setup locally for testing and modifications.

Setup:

git clone https://github.com/CenterForOpenScience/SHARE.git

cd SHARE

pip install -r requirements.txt

// Creates and starts containers for elasticsearch, rabbitmq, and postgres
docker-compose up -d web

./up.sh

To run:

python manage.py runserver
python manage.py celery worker -l DEBUG

Run a harvester:

python manage.py harvest domain.providername --async

To see a list of all providers, as well as their names for harvesting, visit https://share.osf.io/api/v2/sources

For more information, see the section on Harvesters and Transformers.

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SHARE 2.0 documentation

Harvesters and Transformers

A harvester gathers raw data from a source using their API.

A transformer takes the raw data gathered by a harvester and maps the fields to the defined SHARE models.

Start Up

	Install Docker [https://docs.docker.com/engine/installation/].

	Make sure you’re using Python3 - install with miniconda [http://conda.pydata.org/miniconda.html] , or homebrew [http://blog.manbolo.com/2013/02/04/how-to-install-python-3-and-pydev-on-osx#2]

	Install everything inside a Virtual Enviornment - created with Conda [http://conda.pydata.org/docs/using/envs.html] or Virtualenv [https://virtualenv.pypa.io/en/stable/] or your python enviornment of choice.

Installation (inside a virtual environment):

pip install -r requirements.txt

// Creates, starts, and sets up containers for elasticsearch,
// postgres, and the server
docker-compose build web
docker-compose run --rm web ./bootstrap.sh

To run the server in a virtual environment instead of Docker:

docker-compose stop web
python manage.py runserver

To run celery worker:

python manage.py celery worker -l DEBUG

Running Existing Harvesters and Transformers

To see a list of all sources and their names for harvesting, visit https://share.osf.io/api/sources/

	Steps for gathering data:

	
	Harvest data from the original source

	Transform data, or create a ChangeSet` that will format the data to be saved into SHARE Models

	Accept the ChangeSet` objects, and save them as AbstractCreativeWork objects in the SHARE database

Printing to the Console

It is possible to run the harvesters and transformers separately, and print the results out to the console
for testing and debugging using ./bin/share

For general help documentation:

./bin/share --help

For harvest help:

./bin/share harvest --help

To harvest:

./bin/share harvest domain.source_name_here

If the harvester created a lot of files and you want to view a couple:

find <source dir i.e. edu.icpsr/> -type f -name '*.json' | head -<number to list>

The harvest command will by default create a new folder at the top level with the same name as the source name,
but you can also specify a folder when running the harvest command with the --out argument.

To transform all harvested documents:

./bin/share transform domain.source_name_here dir_where_raw_docs_are/*

To transform just one document harvested:

./bin/share transform domain.source_name_here dir_where_raw_docs_are/filename.json

If the transformer returns an error while parsing a harvested document, it will automatically enter into a python debugger.

To instead enter into an enhanced python debugger with access to a few more variables like data, run:

./bin/share debug domain.source_name_here dir_where_raw_docs_are/filename.json

To debug:

e(data, ctx.<field>)

Running Though the Full Pipeline

Note: celery must be running for --async tasks

Run a harvester and transformer:

python manage.py harvest domain.sourcename --async

To automatically accept all ChangeSet objects created:

python manage.py runbot automerge --async

To automatically add all harvested and accepted documents to Elasticsearch:

python manage.py runbot elasticsearch --async

Writing a Harvester and Transformer

See the transformers and harvesters located in the share/transformers/ and share/harvesters/ directories for more examples of syntax and best practices.

Adding a new source

	Determine whether the source has an API to access their metadata

	
	Create a source folder at share/sources/{source name}

	
	Source names are typically the reversed domain name of the source, e.g. a source at http://example.com would have the name com.example

	If the source name starts with a new TLD (e.g. com, au, gov), please add /TLD.*/ to .gitignore [https://github.com/CenterForOpenScience/SHARE/blob/develop/.gitignore] in the generated harvester data section

	
	Create a file named source.yaml in the source folder

	
	See Writing a source.yaml file

	
	Determine whether the source makes their data available using the OAI-PMH [http://www.openarchives.org/OAI/openarchivesprotocol.html] protocol

	
	If the source is OAI see Best practices for OAI sources

	
	Writing the harvester

	
	See Best practices for writing a Harvester

	
	Writing the transformer

	
	See Best practices for writing a Transformer

	
	Adding a sources’s icon

	
	visit www.domain.com/favicon.ico and download the favicon.ico file

	place the favicon as icon.ico in the source folder

	
	Load the source

	
	To make the source available in your local SHARE, run ./manage.py loadsources in the terminal

Writing a source.yaml file

The source.yaml file contains information about the source itself, and one or more configs that describe how to harvest and transform data from that source.

name: com.example
long_title: Example SHARE Source for Examples
home_page: http://example.com/
user: sources.com.example
configs:
- label: com.example.oai
 base_url: http://example.com/oai/
 harvester: oai
 harvester_kwargs:
 metadata_prefix: oai_datacite
 rate_limit_allowance: 5
 rate_limit_period: 1
 transformer: org.datacite
 transformer_kwargs: {}

See the whitepaper [https://github.com/CenterForOpenScience/SHARE/blob/develop/whitepapers/Tables.md] for Source and SourceConfig tables for the available fields.

Best practices for OAI sources

Sources that use OAI-PMH [http://www.openarchives.org/OAI/openarchivesprotocol.html] make it easy to harvest their metadata.

	Set harvester: oai in the source config.

	
	Choose a metadata format to harvest.

	
	Use the ListMetadataFormats OAI verb to see what formats the source supports.

	Every OAI source supports oai_dc, but they usually also support at least one other format that has richer, more structured data, like oai_datacite or mods.

	Choose the format that seems to have the most useful data for SHARE, especially if a transformer for that format already exists.

	Choose oai_dc only as a last resort.

	Add metadata_prefix: {prefix} to the harvester_kwargs in the source config.

	
	If necessary, write a transformer for the chosen format.

	
	See Best practices for writing a Transformer

Best practices for writing a non-OAI Harvester

	The harvester should be defined in share/harvesters/{harvester name}.py.

	
	When writing the harvester:

	
	Inherit from share.harvest.BaseHarvester

	Add the version of the harvester VERSION = 1

	Implement do_harvest(...) (and possibly additional helper functions) to make requests to the source and to yield the harvested records.

	
	Check to see if the data returned by the source is paginated.

	
	There will often be a resumption token to get the next page of results.

	
	Check to see if the source’s API accepts a date range

	
	If the API does not then, if possible, check the date on each record returned and stop harvesting if the date on the record is older than the specified start date.

	
	Add the harvester to entry_points in setup.py

	
	e.g. 'com.example = share.harvesters.com_example:ExampleHarvester',

	run python setup.py develop to make the harvester available in your local SHARE

	Test by running the harvester

Best practices for writing a non-OAI Transformer

	The transformer should be defined in share/transformers/{transformer name}.py.

	
	When writing the transformer:

	
	Determine what information from the source record should be stored as part of the CreativeWork model (i.e. if the record clearly defines a title, description, contributors, etc.).

	
	Use the chain transformer tools as necessary to correctly parse the raw data.

	
	Alternatively, implement share.transform.BaseTransformer to create a transformer from scratch.

	
	Utilize the Extra class

	
	Raw data that does not fit into a defined share model should be stored here.

	Raw data that is otherwise altered in the transformer should also be stored here to ensure data integrity.

	
	Add the transformer to entry_points in setup.py

	
	e.g. 'com.example = share.transformer.com_example:ExampleTransformer',

	run python setup.py develop to make the transformer available in your local SHARE

	Test by running the transformer against raw data you have harvested.

SHARE Chain Transformer

SHARE provides a set of tools for writing transformers, based on the idea of constructing chains for each field that lead from the root of the raw document to the data for that field. To write a chain transformer, add from share.transform.chain import links at the top of the file and make the transformer inherit share.transform.chain.ChainTransformer.

from share.transform.chain import ctx, links, ChainTransformer, Parser

class CreativeWork(Parser):
 title = ctx.title

class ExampleTransformer(ChainTransformer):
 VERSION = 1
 root_parser = CreativeWork

	
	Concat

	To combine list or singular elements into a flat list:

links.Concat(<string_or_list>, <string_or_list>)

	
	Delegate

	To specify which class to use:

links.Delegate(<class_name>)

	
	Join

	To combine list elements into a single string:

links.Join(<list>, joiner=' ')

Elements are separated with the joiner.
By default joiner is a newline.

	
	Map

	To designate the class used for each instance of a value found:

links.Map(links.Delegate(<class_name>), <chain>)

See the share models for what uses a through table (anything that sets through=).
Uses the Delegate tool.

	
	Maybe

	To transform data that is not consistently available:

links.Maybe(<chain>, '<item_that_might_not_exist>')

Indexing further if the path exists:

links.Maybe(<chain>, '<item_that_might_not_exist>')['<item_that_will_exist_if_maybe_passes>']

Nesting Maybe:

links.Maybe(links.Maybe(<chain>, '<item_that_might_not_exist>')['<item_that_will_exist_if_maybe_passes>'], '<item_that_might_not_exist>')

To avoid excessive nesting use the Try link

	
	OneOf

	To specify two possible paths for a single value:

links.OneOf(<chain_option_1>, <chain_option_2>)

	
	ParseDate

	To determine a date from a string:

links.ParseDate(<date_string>)

	
	ParseLanguage

	To determine the ISO language code (i.e. ‘ENG’) from a string (i.e. ‘English’):

links.ParseLanguage(<language_string>)

Uses pycountry [https://pypi.python.org/pypi/pycountry] package.

	
	ParseName

	To determine the parts of a name (i.e. first name) out of a string:

links.ParseName(<name_string>).first

options:

first
last
middle
suffix
title
nickname

Uses nameparser [https://pypi.python.org/pypi/nameparser] package.

	
	RunPython

	To run a defined python function:

links.RunPython('<function_name>', <chain>, *args, **kwargs)

	
	Static

	To define a static field:

links.Static(<static_value>)

	
	Subjects

	To map a subject to the PLOS taxonomy based on defined mappings:

links.Subjects(<subject_string>)

	
	Try

	To transform data that is not consistently available and may throw an exception:

links.Try(<chain>)

	
	XPath

	To access data using xpath:

links.XPath(<chain>, "<xpath_string>")

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SHARE 2.0 documentation

SHARE Models

Due to the nature of the data that are collected by SHARE, the schema model is subject to change.

The current JSON Schema and field descriptions, when available, can be found in our API [https://share.osf.io/api/v2/schema].

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SHARE 2.0 documentation

Elasticsearch

SHARE has an elasticsearch API endpoint that can be used for searching SHARE’s normalized data, as well as for compiling
summary statistics and analyses of the completeness of data from the various sources.

https://share.osf.io/api/v2/search/creativeworks/_search

Fields Indexed by Elasticsearch

Elasticsearch can be used to search the following fields in the normalized data:

'title'
'description'
'type'
'date'
'date_created'
'date_modified
'date_updated'
'date_published'
'tags'
'subjects'
'sources'
'language'
'contributors'
'funders'
'publishers'

Date Fields

There are five date fields, and each has a different meaning. Two are given to SHARE by the data source:

	date_published

	When the work was first published, issued, or made publicly available in any form.
Not all sources provide this, so some works in SHARE have no date_published.

	date_updated

	When the work was last updated by the source. For example, an OAI-PMH record’s <datestamp>.
Most works have a date_updated, but some sources do not provide this.

Three date fields are populated by SHARE itself:

	date_created

	When SHARE first ingested the work and added it to the SHARE dataset. Every work has a date_created.

	date_modified

	When SHARE last ingested the work and modified the work’s record in the SHARE dataset. Every work
has a date_modified.

	date

	Because many works may not have date_published or date_updated values, sorting and filtering works
by date can be confusing. The date field is intended to help. It contains the most useful available
date. If the work has a date_published, date contains the value of date_published. If the work
has no date_published but does have date_updated, date is set to date_updated. If the work
has neither date_published nor date_updated, date is set to date_created.

Accessing the Search API

Using curl

You can acess the API via the command line using a basic query string with curl:

curl -H "Content-Type: application/json" -X POST -d '{
 "query": {
 "query_string" : {
 "query" : "test"
 }
 }
}' https://share.osf.io/api/v2/search/creativeworks/_search

The elasticsearch API also allows you to aggregate over the whole dataset. This query will also return an aggregation of which sources
do not have a value specified for the field “language”:

curl -H "Content-Type: application/json" -X POST -d '{
 "aggs": {
 "sources": {
 "significant_terms": {
 "percentage": {},
 "size": 0,
 "min_doc_count": 1,
 "field": "sources"
 }
 }
 },
 "query": {
 "bool": {
 "must_not": [
 {
 "exists": {
 "field": "language"
 }
 }
]
 }
 }
}' https://share.osf.io/api/v2/search/creativeworks/_search

For more information on sending elasticsearch queries and aggregations, check out the elasticsearch query DSL documentation [https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html].

You can also use the SHARE Discover page [https://share.osf.io/discover] to generate query DSL. Use the filters in the sidebar to construct a query, then click “View query body” to see the query in JSON form.

Searching for ORCIDs

Get all works where contributors have ORCID identifiers:
https://share.osf.io/api/v2/search/creativeworks/_search?q=lists.contributors.identifiers:orcid.org

In the results, the ORCID will be listed under:
_source → lists → contributors → (contributor) → identifiers

{
 timed_out: false,
 hits: {
 total: 204235,
 hits: [
 {
 _id: "XXXX-XXX-XXX",
 _source: {
 id: "XXXX-XXX-XXX",
 date_updated: "2016-04-23T07:31:31+00:00",
 title: "Title Example",
 date: "2016-04-23T07:31:31+00:00",
 description: "Example of a search result containing an ORCID.",
 contributors: [...],
 date_created: "2016-11-28T22:21:09.917395+00:00",
 date_modified: "2016-11-29T14:18:49.745627+00:00",
 date_published: null,
 lists: {
 contributors: [
 {
 given_name: "T.",
 types: [
 "person",
 "agent"
],
 order_cited: 133,
 identifiers: [
 "http://orcid.org/XXXX-XXXX-XXXX-XXXX"
],
 cited_as: "T. User",
 family_name: "User",
 relation: "creator",
 name: "T. User",
 type: "person",
 id: "XXXX-XXX-XXX"
 },
 ...

Search for an ORCID identifier:
https://share.osf.io/api/v2/search/creativeworks/_search?q=lists.contributors.identifiers:”XXXX-XXXX-XXXX-XXXX”

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SHARE 2.0 documentation

SHARE API

The SHARE API generally complies with the JSON-API [http://jsonapi.org/] v1.0 spec, as should anyone using the SHARE API.

Check out the browsable SHARE API docs [https://share.osf.io/api/]!

Getting Started

Before pushing data to production it is highly recommended to use our staging environment.

	Go to the staging OSF [https://staging.osf.io] and register for an account [https://staging.osf.io/register/]

	Navigate to staging SHARE [https://staging-share.osf.io] and login.

	Register to become a source [https://staging-share.osf.io/registration].

	Send an email to share-support@osf.io and wait for us to approve your account.

	Once approved, the API token from your staging SHARE profile page [https://staging-share.osf.io/profile] can be used to push data.

To become a Source for production repeat the above steps at https://share.osf.io with a production OSF account [https://staging.osf.io/register/].

Note

Our Staging enviroment is constantly being updated with new code. If something doesn’t work, try again in a day or two before contacting us at share-support@osf.io

Paging in the API

The SHARE API implements diffent paging strategies depending on the endpoint. All of them, however, conform to the JSON-API paging spec [http://jsonapi.org/format/#fetching-pagination].

import requests

r = requests.get(
 'https://share.osf.io/api/v2/normalizeddata/',
 headers={'Content-Type': 'application/vnd.api+json'}
)
next_link = r.json()['links']['next']

Push data directly into the SHARE database

Changes to the SHARE dataset, additions, modifications, or deletions (Not yet supported), are submitted as a subset of JSON-LD graphs [https://www.w3.org/TR/json-ld/#named-graphs].
A change is represented as a JSON object with a single key, @graph, containing a list of JSON-LD nodes [https://www.w3.org/TR/json-ld/#dfn-node].

{
 "@graph": [
 {
 // Omitted...
 },
 {
 // Omitted...
 },
 {
 // Omitted...
 }
]
}

	Each node MUST contain an @id and @type key.

	@id MUST be either a blank node identifier [https://www.w3.org/TR/rdf11-concepts/#dfn-blank-node-identifier] or the id of an existing object in the SHARE dataset.

// GOOD: A blank identifier
{
 "@id": "_:1234"
 // Omitted...
}

// GOOD: An existing object's ID
{
 "@id": "46227-0C4-522"
 // Omitted...
}

// BAD: Anything that is not a string
{
 "@id": 12
 // Omitted...
}

// BAD: A meaningless string
{
 "@id": "FooBar"
 // Omitted...
}

	@type MUST be a SHARE type [https://share.osf.io/api/v2/schema].

Note

@type is case sensitive and expects title case, lowercase, or uppercase types.

// GOOD: Title case for a type from the linked page
{
 "@type": "Preprint"
 // Omitted...
}

// GOOD: All lowercase for a type from the linked page
{
 "@type": "article"
 // Omitted...
}

// GOOD: All uppercase for a type from the linked page
{
 "@type": "CREATIVEWORK"
 // Omitted...
}

// BAD: Other casing of a type from the linked page
{
 "@type": "cReAtIvEwOrK"
 // Omitted...
}

// BAD: Anything else
{
 "@type": "Unicorn"
 // Omitted...
}

	Each node MUST match the JSON schema [http://json-schema.org/] for its specified type (@type).

Note

The JSON schemas for every type can be found here [https://share.osf.io/api/v2/schema].

// GOOD: Following the schema
{
 "@id": "_:abc",
 "@type": "Person",
 "given_name": "Tim"
 "family_name": "Errington"
}

// GOOD: Following the schema a different way
{
 "@id": "_:abc",
 "@type": "Person",
 "name": "Tim Errington"
}

// BAD: Invalid data
{
 "@id": "_:abc",
 "@type": "Article",
 "color": "Nine"
}

	Nodes may reference either existing objects or nodes in the same graph.

Note

The order of nodes in @graph does not matter.

 // GOOD: Referring to another node
 {
 "@graph": [{
 "@id": "_:123",
 "@type": "agentidentifier",
 "uri": "http://osf.io/juwia",
 "agent": {"@id": "_:abc", "@type": "person"} // Refers the the node below
 }, {
 "@id": "_:abc",
 "@type": "person",
 "name": "Chris Seto",
 }]
 }

 // GOOD: Referring to an existing object
 {
 "@graph": [{
 "@id": "_:123",
 "@type": "agentidentifier",
 "uri": "http://osf.io/juwia",
 "agent": {"@id": "6403D-314-B83", "@type": "person"}
 }]
 }

 // BAD: Referring to a node that is not defined
 {
 "@graph": [{
 "@id": "_:123",
 "@type": "agentidentifier",
 "uri": "http://osf.io/juwia",
 "agent": {"@id": "_:abcd", "@type": "person"} // _:abcd does not appear anywhere
 }]
 }

 // BAD: Referring to a node any way besides {"@id": "...", "@type": "..."}
 {
 "@graph": [{
 "@id": "_:123",
 "@type": "agentidentifier",
 "uri": "http://osf.io/juwia",
 "agent": "6403D-314-B83", // Please don't
 }]
 }

	Finally, changes must be submitted in JSON-API [http://jsonapi.org/] format using OAuth2 [http://self-issued.info/docs/draft-ietf-oauth-v2-bearer.html] to authenticate

Note

Yes, there are two data keys. Sorry.

POST /api/v2/normalizeddata HTTP/1.1
Host: share.osf.io
Authorization: Bearer ACCESS_TOKEN
Content-Type: application/vnd.api+json

{
 "data": {
 "type": "NormalizedData",
 "attributes": {
 "data": {
 "@graph": [/* ... */]
 }
 }
 }
}

Example Data

{
 "@graph": [{
 "uri": "http://dx.doi.org/10.1038/EJCN.2016.211",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@type": "WorkIdentifier",
 "@id": "_:014eb1c53ba64c9c88bc46ef89cb2080"
 }, {
 "uri": "oai://nature.com/10.1038/ejcn.2016.211",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@type": "WorkIdentifier",
 "@id": "_:d058a287d60f45a48e7d0a9ecfd98bad"
 }, {
 "name": "M Santiago-Torres",
 "@type": "person",
 "@id": "_:760b02f6297a4bbd8fd6f2a0af306dd7"
 }, {
 "order_cited": 0,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:a632e7a0a5814e7fb1fdef1bec6895ab",
 "agent": {
 "@type": "person",
 "@id": "_:760b02f6297a4bbd8fd6f2a0af306dd7"
 },
 "cited_as": "M Santiago-Torres"
 }, {
 "name": "J De Dieu Tapsoba",
 "@type": "person",
 "@id": "_:15838a790c5d41508e5ad8f1327fbaa9"
 }, {
 "order_cited": 1,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:55cd617b118c43f5becb7647f17eba12",
 "agent": {
 "@type": "person",
 "@id": "_:15838a790c5d41508e5ad8f1327fbaa9"
 },
 "cited_as": "J De Dieu Tapsoba"
 }, {
 "name": "M Kratz",
 "@type": "person",
 "@id": "_:50098933694d4795a2653546cdc85493"
 }, {
 "order_cited": 2,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:3c75c1082fde4676a53d16111c7354d9",
 "agent": {
 "@type": "person",
 "@id": "_:50098933694d4795a2653546cdc85493"
 },
 "cited_as": "M Kratz"
 }, {
 "name": "J W Lampe",
 "@type": "person",
 "@id": "_:97eb79ce0005436894b52d53536d3ddc"
 }, {
 "order_cited": 3,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:671d6abea53442e1b50a2976cbe10ac7",
 "agent": {
 "@type": "person",
 "@id": "_:97eb79ce0005436894b52d53536d3ddc"
 },
 "cited_as": "J W Lampe"
 }, {
 "name": "K L Breymeyer",
 "@type": "person",
 "@id": "_:38b4cc174ea44f649257f86cf93effbc"
 }, {
 "order_cited": 4,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:b7676b36d1b4483e8008eedfbd1fb043",
 "agent": {
 "@type": "person",
 "@id": "_:38b4cc174ea44f649257f86cf93effbc"
 },
 "cited_as": "K L Breymeyer"
 }, {
 "name": "L Levy",
 "@type": "person",
 "@id": "_:b809383685844464ab2a4203c8b5ee98"
 }, {
 "order_cited": 5,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:fecd2c815ba84e1d9455b1d31182b267",
 "agent": {
 "@type": "person",
 "@id": "_:b809383685844464ab2a4203c8b5ee98"
 },
 "cited_as": "L Levy"
 }, {
 "name": "X Song",
 "@type": "person",
 "@id": "_:007fca2333e74ed38e3f1b92a13662ae"
 }, {
 "order_cited": 6,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:b0c9846c388541c39f0cc42056dc1de2",
 "agent": {
 "@type": "person",
 "@id": "_:007fca2333e74ed38e3f1b92a13662ae"
 },
 "cited_as": "X Song"
 }, {
 "name": "A Villase\u00f1or",
 "@type": "person",
 "@id": "_:78a4cd8407a74e0a81468ba3cd2658ed"
 }, {
 "order_cited": 7,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:96f9851b68444d9fa5ad7faab1f1d518",
 "agent": {
 "@type": "person",
 "@id": "_:78a4cd8407a74e0a81468ba3cd2658ed"
 },
 "cited_as": "A Villase\u00f1or"
 }, {
 "name": "C-Y Wang",
 "@type": "person",
 "@id": "_:6ffa6c228c75476c9cc089053be6b3f1"
 }, {
 "order_cited": 8,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:f39c7fa402ca4028a78798dc67eb5dff",
 "agent": {
 "@type": "person",
 "@id": "_:6ffa6c228c75476c9cc089053be6b3f1"
 },
 "cited_as": "C-Y Wang"
 }, {
 "name": "L Fejerman",
 "@type": "person",
 "@id": "_:3a15f900ccba4d5cbeade9c48f857f60"
 }, {
 "order_cited": 9,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:51fbd9a4043b41f29407522e3ef50534",
 "agent": {
 "@type": "person",
 "@id": "_:3a15f900ccba4d5cbeade9c48f857f60"
 },
 "cited_as": "L Fejerman"
 }, {
 "name": "M L Neuhouser",
 "@type": "person",
 "@id": "_:e5930003ef914b9e99892cbb134ab0ad"
 }, {
 "order_cited": 10,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:b1fd726a4788423eb3a71509b2493757",
 "agent": {
 "@type": "person",
 "@id": "_:e5930003ef914b9e99892cbb134ab0ad"
 },
 "cited_as": "M L Neuhouser"
 }, {
 "name": "C S Carlson",
 "@type": "person",
 "@id": "_:a021013c285a4c589b5c1360eb261647"
 }, {
 "order_cited": 11,
 "@type": "Creator",
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@id": "_:34c8ec8f32a74abbaa38d5efec6e9fdd",
 "agent": {
 "@type": "person",
 "@id": "_:a021013c285a4c589b5c1360eb261647"
 },
 "cited_as": "C S Carlson"
 }, {
 "name": "Nature Publishing Group",
 "@type": "organization",
 "@id": "_:2cb215bb499844cf8aecc2c9f817386c"
 }, {
 "agent": {
 "@type": "organization",
 "@id": "_:2cb215bb499844cf8aecc2c9f817386c"
 },
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@type": "Publisher",
 "@id": "_:5e65f7f40b0f41989566fcf66241767c"
 }, {
 "name": "ejcn",
 "@type": "Tag",
 "@id": "_:a9d049bdd4c7482bb82f513e09365c2e"
 }, {
 "tag": {
 "@type": "Tag",
 "@id": "_:a9d049bdd4c7482bb82f513e09365c2e"
 },
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@type": "ThroughTags",
 "@id": "_:e70071583d604be2a7e104cd61b2b6cc"
 }, {
 "name": "Original Article",
 "@type": "Tag",
 "@id": "_:610d99b2c5b74a82896c4681c60ecebb"
 }, {
 "tag": {
 "@type": "Tag",
 "@id": "_:610d99b2c5b74a82896c4681c60ecebb"
 },
 "creative_work": {
 "@type": "article",
 "@id": "_:703a584afb704403bc99d684e0914c06"
 },
 "@type": "ThroughTags",
 "@id": "_:eeeef1b6c0c24bc58344938badafd464"
 }, {
 "date_updated": "2016-12-14T00:00:00+00:00",
 "rights": "\u00a9 2016 Macmillan Publishers Limited, part of Springer Nature.",
 "related_works": [],
 "title": "Genetic ancestry in relation to the metabolic response to a US versus traditional Mexican diet: a randomized crossover feeding trial among women of Mexican descent",
 "subjects": [],
 "extra": {
 "language": "en",
 "set_spec": "ejcn",
 "identifiers": [
 "doi:10.1038/ejcn.2016.211",
 "oai:nature.com:10.1038/ejcn.2016.211"
],
 "dates": "2016-12-14",
 "creator": [
 "M Santiago-Torres",
 "J De Dieu Tapsoba",
 "M Kratz",
 "J W Lampe",
 "K L Breymeyer",
 "L Levy",
 "X Song",
 "A Villase\u00f1or",
 "C-Y Wang",
 "L Fejerman",
 "M L Neuhouser",
 "C S Carlson"
],
 "resource_type": "Original Article"
 },
 "@id": "_:703a584afb704403bc99d684e0914c06",
 "@type": "article"
 }]
}

Code Examples

Python

import requests

url = 'https://share.osf.io/api/normalizeddata/'

payload = {
 'data': {
 'type': 'NormalizedData'
 'attributes': {
 'data': {
 '@graph': [{
 '@type': creativework,
 '@id': <_:random>,
 title: "Example Title of Work"
 }]
 }
 }
 }
}

r = requests.post(url, json=payload, headers={
 'Authorization': 'Bearer <YOUR_TOKEN>',
 'Content-Type': 'application/vnd.api+json'
})

JavaScript

let payload = {
 'data': {
 'type': 'NormalizedData'
 'attributes': {
 'data': {
 '@graph': [{
 '@type': creativework,
 '@id': <_:random>,
 title: "Example Title of Work"
 }]
 }
 }
 }
}

$.ajax({
 method: 'POST',
 headers: {
 'X-CSRFTOKEN': csrfToken
 },
 xhrFields: {
 withCredentials: true,
 },
 data: JSON.stringify(payload),
 contentType: 'application/vnd.api+json',
 url: 'https://share.osf.io/api/normalizeddata/',
})

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 previous |

 	SHARE 2.0 documentation

Ember Application

Interfaces to interact with SHARE data can be built on top of the SHARE API.

As an example, we built an Ember [http://emberjs.com/about/] application that uses the SHARE API. Find it on GitHub at CenterForOpenScience/ember-share [https://github.com/CenterForOpenScience/ember-share.git]
or check out the website [https://share.osf.io/discover].

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	SHARE 2.0 documentation

Index

 Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

 _static/up.png

_static/share_vertical_models.png
Abstract Creative Work

creative_work

title TextField
description TextField
contributors ShareManyToManyField(Person)
awards ShareManyToManyField(Award)
venues ShareManyToManyField(Venue)
links ShareManyToMany(Link)
funders ShareManyToMany(Funder)
publishers ShareManyToManyField(Publisher)
institutions ShareManyToManyField(Institution)
organizations ShareManyToManyField(Organization)
subject ShareForeignKey(Tag)
tags ShareManyToManyField(Tag)
date_created DateTimeField
date_published DateTimeField
date_updated DateTimeField
free_to _read_type ShareURLField
free_to_read_date DateTimeField
rights TextField
language TextField

ThroughLinks
link ShareForeignKey(Link)

ShareForeignKey(AbstractCreative\Work)

creative_work

Link
link URIField
type TextField
ThroughAwards
award ShareForeignKey(Award)

ShareForeignKey(AbstractCreativeWork)

creative_work

Award
award ShareURLField
description TextField
url ShareURLField
ThroughVenues
venue ShareForeignKey(Venue)

ShareForeignKey(AbstractCreativeWork)

creative_work

Venue
name TextField
venue_type ShareURLField
location ShareURLField
community_identifier ShareURLField
ThroughTags
tag ShareForeignKey(Tag)

ShareForeignKey(AbstractCreativeWork)

creative_work

Tag
name TextField
url ShareURLField
Contributor
cited_name TextField
order_cited PositivelntegerField
person ShareForeignKey(Person)

ShareForeignKey(AbstractCreativeWork)

Person
family_name TextField
given_name TextField
additional_name TextField
suffix TextField

creative_work

emails ShareManyToManyField(Email)
affiliations ShareManyToManyField(Entity)
identifiers ShareManyToManyField(ldentifier)
location TextField
url ShareURLField
PersonEmail
email ShareForeignKey(Email)
person ShareForeignKey(Person)
Email
is_primary BooleanField
email EmailField
Throughldentifiers
identifier ShareForeignKey(Identifier)
person ShareForeignKey(Person)
Identifier
url ShareURLField
base_url ShareURLField
Affiliation
entity ShareForeignKey(Entity)
person ShareForeignKey(Person)
Association
entity ShareForeignKey(Entity)

ShareForeignKey(AbstractCreativeWork)

Entity
url ShareURLField
name TextField
location TextField
affiliations ShareManyToManyField(Person)

_static/comment-close.png

_static/file.png

_static/plus.png

_static/comment.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		SHARE 2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Center for Open Science.
 Created using Sphinx 1.4.4.

_static/logo.png
(c0)
SHARE

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

_static/minus.png

